Recommended Reading: The Coming Famine

Keywords: Julian Cribb, The Coming Famine, food, water, population, climate change

If you are a regular reader of this blog, you know that we track several core issues that we believe will have profound impact on us all – rich and poor, individuals, communities, business, and government. They are population, energy, water, food, climate change and healthcare. In a sense, food interrelates to all the other issues – it takes tremendous energy and water to produce our food, climate change will reduce food production, and food choices affect our health.

An excellent new book has just been published that clearly and concisely lays out the global food challenges unfolding around us and details what to do about it. The book is The Coming Famine: The Global Food Crisis and What We Can Do to Avoid It by Julian Cribb. The NY Times has an excellent excerpt and leads with this compelling quote:

Lo que separa la civilización de la anarquía son solo siete comidas.
(Civilization and anarchy are only seven meals apart.)

—Spanish proverb

Food, water, shelter and security are the fundamental building blocks of  a persons survival. When those basics are removed, even for a few days, a civilized population can move toward anarchy in a heartbeat.

Maslow's Hierarchy of Needs - from thrive to survive

Rather than highlight the NY Times excerpt, I think it is worth looking at the solid concise description Cribb provides, of the main drivers challenging the supply and demand sides of food production. If you read nothing else in this book, read this and remember it as you  try to make sense of the news stories realted to food that will become more common as the crisis deepens.

Excerpt of The Coming Famine by Julian Cribb

To see where the answers may lie, we need to explore each of the main drivers. On the demand side the chief drivers are:

Population. Although the rate of growth in human numbers is slowing, the present upward trend of 1.5 percent (one hundred million more people) per year points to a population of around 9.2 billion in 2050 — 3 billion more than in 2000. Most of this expansion will take place in poorer countries and in tropical/subtropical regions. In countries where birth rates are falling, governments are bribing their citizens with subsidies to have more babies in an effort to address the age imbalance.

Consumer demand. The first thing people do as they climb out of poverty is to improve their diet. Demand for protein foods such as meat, milk, fish, and eggs from consumers with better incomes, mainly in India and China but also in Southeast Asia and Latin America, is rising rapidly. This in turn requires vastly more grain to feed the animals and fish. Overfed rich societies continue to gain weight. The average citizen of Planet Earth eats one-fifth more calories than he or she did in the 1960s — a “food footprint” growing larger by the day.

Population and demand. This combination of population growth with expansion in consumer demand indicates a global requirement for food by 2050 that will be around 70–100 percent larger than it is today. Population and demand are together rising at about 2 percent a year, whereas food output is now increasing at only about 1 percent a year.

These demand-side factors could probably be satisfied by the world adopting tactics similar to those of the 1960s, when the Green Revolution in farming technology was launched, were it not for the many constraints on the supply side that are now emerging to hinder or prevent such a solution:

Water crisis. Put simply, civilization is running out of freshwater. Farmers presently use about 70 percent of the world’s readily available freshwater to grow food. However, increasingly megacities, with their huge thirst for water for use in homes, industry, and waste disposal, are competing with farmers for this finite resource and, by 2050, these uses could swallow half or more of the world’s available freshwater at a time when many rivers, lakes, and aquifers will be drying up. Unless major new sources or savings are found, farmers will have about half of the world’s currently available freshwater with which to grow twice the food.

Land scarcity. The world is running out of good farmland. A quarter of all land is now so degraded that it is scarcely capable of yielding food. At the same time, cities are sprawling, smothering the world’s most fertile soil in concrete and asphalt, while their occupants fan out in search of cheap land for recreation that diverts the best food-producing areas from agriculture. A third category of land is poisoned by toxic industrial pollution. Much former urban food production has now ceased. The emerging global dearth of good farmland represents another severe limit on increasing food production.

Nutrient losses. Civilization is hemorrhaging nutrients — substances essential to all life. Annual losses in soil erosion alone probably exceed all the nutrients applied as fertilizer worldwide. The world’s finite nutrient supplies may already have peaked. Half the fertilizer being used is wasted. In most societies, up to half the food produced is trashed or lost; so too are most of the nutrients in urban waste streams. The global nutrient cycle, which has sustained humanity throughout our history, has broken down.

Energy dilemma. Advanced farming depends entirely on fossil fuels, which are likely to become very scarce and costly within a generation. At present farmers have few alternative means of producing food other than to grow fuel on their farms — which will reduce food output by 10–20 percent. Many farmers respond to higher costs simply by using less fertilizer or fuel — and so cutting yields. Driven by high energy prices and concerns about climate change, the world is likely to burn around 400 million tonnes (441 million U.S. tons) of grain as biofuels by 2020 — the equivalent of the entire global rice harvest.

Oceans. Marine scientists have warned that ocean fish catches could collapse by the 2040s due to overexploitation of wild stocks. Coral reefs — whose fish help feed about five hundred million people — face decimation under global warming. The world’s oceans are slowly acidifying as carbon dioxide from the burning of fossil fuels dissolves out of the atmosphere, threatening ocean food chains. Fish farms are struggling with pollution and sediment runoff from the land. The inability of the fish sector to meet its share of a doubling in world food demand will throw a heavier burden onto land-based meat industries.

Technology. For three de cades the main engine of the modern food miracle, the international scientific research that boosted crop yields, has been neglected, leading to a decline in productivity gains. Farmers worldwide are heading into a major technology pothole, with less new knowledge available in the medium run to help them to increase output.

Climate. The climate is changing: up to half the planet may face regular drought by the end of the century. “Unnatural disasters” — storms, floods, droughts, and sea-level rise — are predicted to become more frequent and intense, with adventitious impacts on food security, refugee waves, and conflict.

Economics, politics, and trade. Trade barriers and farm subsidies continue to distort world markets, sending the wrong price signals to farmers and discouraging investment in agriculture and its science. The globalization of food has helped drive down prices received by farmers. Speculators have destabilized commodity markets, making it riskier for farmers to make production decisions. Some countries discourage or ban food exports and others tax them, adding to food insecurity. Others pay their farmers to grow fuel instead of food. A sprawling web of health, labor, and environmental regulation is limiting farmers’ freedom to farm.

The collapse in world economic conditions in late 2008 and 2009 has changed the prices of many things, including land, food, fuel, and fertilizer — but has not altered the fact that demand for food continues to grow while limits on its production multiply. Indeed, the economic crash exacerbated hunger among the world’s poor, and has not altered the fundamentals of climate change, water scarcity, population growth, land degradation, or nutrient or oil depletion.

As Cribb astutely points out, as developing nations become more affluent, they consume more protein, in the form of fish, meat, milk, eggs, etc.

Meat Protein Consumption in US and China
(source: US Department of Agriculture)

That protein is produced with grain, and it is an inefficient process:

  • It takes 1,ooo tons of water to produce a ton of grain
  • It takes about 15 pounds of grain to produce a pound of beef
  • It takes about 5,200 gallons of water to produce a pound of beef

Thinking about the Butterfly Effect – the idea that a butterfly flapping its wings in one part of the world, changing patterns in the air, can cause a tornado in another part of the world – we can see that famine in one part of the world becomes a kind of super butterfly. All nations – rich and poor – will feel the impact.

Cripp summarizes the challenge and frames the solution:

To sum it all up, the challenge facing the world’s 1.8 billion women and men who grow our food is to double their output of food — using far less water, less land, less energy, and less fertilizer. They must accomplish this on low and uncertain returns, with less new technology available, amid more red tape, economic disincentives, and corrupted markets, and in the teeth of spreading drought. Achieving this will require something not far short of a miracle.

Yet humans have done it before and, resilient species that we are, we can do it again. This time, however, it won’t just be a problem for farmers, scientists, and policy makers. It will be a challenge involving every single one of us, in our daily lives, our habits, and our influence at the ballot box and at the supermarket.

It will be the greatest test of our global humanity and our wisdom we have yet faced.

Growth Versus Consumerism

Keywords: growth, consumption, GDP, global economy, China, India, consumerism

Robert Reich wrote a thoughtful article on Why Growth is Good. Highlights of the article are below. In it, he differentiates between growth and consumption.

Growth is really about the capacity of a nation to produce everything that’s wanted and needed by its inhabitants. That includes better stewardship of the environment as well as improved public health and better schools.

A couple years ago I wrote an article – Nobel Laureate Joseph Stiglitz on Sustainability and Growth – in which Stiglitz talked about the idea that “we grow what we measure.” Here’s an exerpt from the end of that article that I think is relevant to Reich’s article:

For me, what Stiglitz is getting at is:  We grow what we measure (GDP), and because we are measuring the wrong stuff, we are growing wrong. It seems to be in our DNA to want to “grow,” but like a garden, don’t we have a choice about what we grow?  Are there ways we can grow our economy that restore abundance rather than consume it? What are the essential things to measure so that we are growing good things?

Using ecological footprint data from Global Footprint Network we can see the current state of consumption for North America and the rest of the world. American per capita consumption is legend. China and India are adopting their own versions of American-style consumerism. All nations are bumping up against the limits of the earth to provide what is needed for growth. We are collectively challenged to find new ways to grow, more lightly, in ways that restore rather than deplete.

Global Ecological Footprint

N.B. The width of bar proportional to population in associated region. Ecological Footprint accounts estimate how many Earths were needed to meet the resource requirements of humanity for each year since 1961, when complete UN statistics became available. Resource demand (Ecological Footprint) for the world as a whole is the product of population times per capita consumption, and reflects both the level of consumption and the efficiency with which resources are turned into consumption products. Resource supply (biocapacity) varies each year with ecosystem management, agricultural practices (such as fertilizer use and irrigation), ecosystem degradation, and weather.
This global assessment shows how the size of the human enterprise compared to the biosphere, and to what extent humanity is in ecological overshoot. Overshoot is possible in the short-term because humanity can liquidate its ecological capital rather than living off annual yields.

Highlights from Robert Reich’s Why Growth is Good

Economic growth is slowing in the United States. It’s also slowing in Japan, France, Britain, Italy, Spain, and Canada. It’s even slowing in China. And it’s likely to be slowing soon in Germany.

If governments keep hacking away at their budgets while consumers almost everywhere are becoming more cautious about spending, global demand will shrink to the point where a worldwide dip is inevitable.

You might ask yourself: So what? Why do we need more economic growth anyway? Aren’t we ruining the planet with all this growth — destroying forests, polluting oceans and rivers, and spewing carbon into the atmosphere at a rate that’s already causing climate chaos? Let’s just stop filling our homes with so much stuff.

The answer is economic growth isn’t just about more stuff. Growth is different from consumerism. Growth is really about the capacity of a nation to produce everything that’s wanted and needed by its inhabitants. That includes better stewardship of the environment as well as improved public health and better schools. (The Gross Domestic Product is a crude way of gauging this but it’s a guide. Nations with high and growing GDPs have more overall capacity; those with low or slowing GDPs have less.)

Poorer countries tend to be more polluted than richer ones because they don’t have the capacity both to keep their people fed and clothed and also to keep their land, air and water clean. Infant mortality is higher and life spans shorter because they don’t have enough to immunize against diseases, prevent them from spreading, and cure the sick.

In their quest for resources rich nations (and corporations) have too often devastated poor ones – destroying their forests, eroding their land, and fouling their water. This is intolerable, but it isn’t an indictment of growth itself. Growth doesn’t depend on plunder. Rich nations have the capacity to extract resources responsibly. That they don’t is a measure of their irresponsibility and the weakness of international law.

How a nation chooses to use its productive capacity – how it defines its needs and wants — is a different matter. As China becomes a richer nation it can devote more of its capacity to its environment and to its own consumers, for example.

The United States has the largest capacity in the world. But relative to other rich nations it chooses to devote a larger proportion of that capacity to consumer goods, health care, and the military. And it uses comparatively less to support people who are unemployed or destitute, pay for non-carbon fuels, keep people healthy, and provide aid to the rest of the world. Slower growth will mean even more competition among these goals.

Faster growth greases the way toward more equal opportunity and a wider distribution of gains. The wealthy more easily accept a smaller share of the gains because they can still come out ahead of where they were before. Simultaneously, the middle class more willingly pays taxes to support public improvements like a cleaner environment and stronger safety nets. It’s a virtuous cycle. We had one during the Great Prosperity the lasted from 1947 to the early 1970s.

Slower growth has the reverse effect. Because economic gains are small, the wealthy fight harder to maintain their share. The middle class, already burdened by high unemployment and flat or dropping wages, fights ever more furiously against any additional burdens, including tax increases to support public improvements. The poor are left worse off than before. It’s a vicious cycle. We’ve been in one most of the last thirty years.

No one should celebrate slow growth. If we’re entering into a period of even slower growth, the consequences could be worse.

For some excellent reading on this subject, check out the Recommended Reading section on Sustainable Business, Government, and Community. I especially found useful Lester Brown’s Plan B 4.0 and Jeffrey Sachs’ Common Wealth.

Water Scarcity in the US

When I talk with groups about water, here are some factoids that usually surprise:

  • By 2020, California will face a shortfall of fresh water as great as the amount that all of its cities and towns together are consuming today.
  • By 2025, 1.8 billion
 people will live in conditions of absolute 
water scarcity, and 65 percent of the worlds population will be water stressed.
  • To grow a ton of wheat uses 1,000 tons of water. The US is the largest exporter of wheat to the world. When we export a ton of our wheat, we are effectively including 1,000 tons of water in the bargain.
  • In the US, 21 percent of irrigation is achieved by pumping groundwater at rates that exceed the water supplies ability to recharge.
  • There are 66 golf courses in Palm Springs.  On average, they each consume over a million gallons of water per day.
  • Lake Meade (the source of 95% of water for Las Vegas) will be dry in the next 4 to 10 years (see picture below).

Water scarcity is a global problem and is not confined to “poor” nations.

Global Water Stress
Global Water Stress (scource: World Resources Institute)

In the US, we are now seeing headlines about droughts in places like Florida, Georgia, etc. – not your traditional areas of drought. A powerful way to understand the pervasiveness of America’s water scarcity problem is through the following pictures.

This first picture shows areas of the US that are experiencing moderate (yellow), severe (red), and extreme (purple) drought.

US Drought Map (source: NOAA)

The picture above is constantly updated, and now, in fall 2011, Texas is experience unprecedented drought. I was driving through Texas a few weeks ago, and at that time, local radio stations talked about how Austin, as just one example, had experienced 72 days in a row of 100 plus temperatures. Here’s a picture of the current (September 27, 2011) drought situation throughout the US. Note that drought levels in most of Texas are at level D4 – “Exceptional.”

US drought map
US drought map - September 29, 2011 (source: NOA, NESDIS, NCDC)

These dry conditions have fostered endless fires that are sweeping across Texas and throughout the Southwest. Predictions are that the drought will likely last for years. Planners will need to make sure public policy on water conservation are in line with emerging water scarcity conditions. When does a drought become a desert?

Shifting the lens toward the Southwest, here’s a picture of Lake Meade, boating haven and water source for Las Vegas. Current estimates predict it will be dry in the next 4 to 10 years.

Lake Meade water scarcity
A picture of the fast disappearing Lake Meade taken in 2007

Food production in the “breadbasket” of the US depends on water from the Ogallala Aquifer.  The picture below shows where the sharpest declines in water level are occurring.

Ogallala Aquifer water shortage
Ogallala Aquifer (source: USGS)
well-level changes in aquifer - Lamb County, Texas
(source: USGS)

The USGS monitors over 9,000 wells throughout the aquifer. Zeroing in on Texas again, here’s a picture of a typical well in Lamb County, Texas. Monitoring of this well started in about 1950, when irrigation began. This well shows a water table that has fallen steadily, and at current draw rates, this well will be dry in the next decade or so. How will farmers, who depend on a reliable source of water to grow crops and ride through accelerating drought, stay in business? How will the drying of the Ogallala Aquifer effect America’s ability to feed the nation?

A recent article in The Texas Tribune sets out the impact Ogallala water scarcity will have on Texas.  This story is not unique and is being played out throughout the 8 state region covered by the Ogallala.

Highlights of the Tribune article:

  • The Ogalala aquifer stretches across 8 states and accounts for 40 percent of water used in Texas.
  • The Ogallala’s volume will fall a staggering 52 percent between 2010 and 2060.
  • The use of big pivot irrigation — the lifeblood of the Panhandle — could be cut back severely in 10 to 20 years.
  • Texans are probably pumping the Ogallala at about six times the rate of recharge.
  • Water conservation and regulation policy is difficult to implement because Texas views groundwater as essentially a property right.
  • T. Boone Pickens business Mesa Water and other companies are buying up water rights, and looking to market water to cities like Dallas.  This is creating a variety of court challenges in the struggle to define the line between public and private water rights.

For more information on the critical issues around private and public access to water, read the well-researched Blue Gold by Maude Barlow and Tony Clarke.

The Real Population Problem

Google Trends tells me that starting in 2008 the monthly number of news stories on population doubled. Most of the stories like to talk about how global population will expand by 30%, peaking at about 9.1 billion people by around 2050.  Though 2050 is a nice round number, and a convenient mid-century marker, one can be lulled in to feeling like it’s a problem that is 40 years off. Not so. The population problem is here and now. And it’s not just about the number of people on the planet, but how those people consume resources.  Let’s take a look at the pertinent trends.

Energy and Population

The rate of population growth has a strong correlation with the effectiveness of the dominant fuel source at any given point in history.  As the chart below shows, wood was the dominant fuel until coal came on the scene in the 1600s. The population growth rate increased modestly with the proliferation of coal.  But the real exponential growth began with the discovery and exploitation of crude oil.  Crude oil production is peaking and the world is in the early stages of a transition from fossil fuels to renewable sources of energy.

Fueling Population Growth



China, Brazil and India – Chasing the American Dream

As the population has grown, per capita income and consumption have grown. The most dramatic growth has been in the developing countries of China, Brazil and India. Let’s take a look at the trends in energy use and per capita income relative to some of the leading developed nations. Using GapMinder’s Trendalyzer with energy consumption data from BP’s Statistical Review of World Energy 2010 and income data from the IMF, we can see some powerful trends unfolding (N.B. data presented for 1965 through 2008, 1 year steps, circle area proportional to population size, energy use in tonnes of oil equivalent):

  • China, Brazil, and India all show steadily increasing per capita income, with China having the biggest change – outperforming India and Brazil more than 2 to 1.
  • Though US per capita energy consumption is substantially larger than China, Brazil or India, growth has been flat. This comes from conservation initiatives (efficient lighting, insulation, etc.). We must do better.
  • China, Brazil, and India’s energy consumption is growing quickly as they move toward American patterns of consumption. The trend is strong and steady, with no signs of slowing.
Regional Energy Consumption and Income Trends
(click for larger image)


Less Is The New More

Though Americans represent only 5% of the world’s population, we are consuming about 24% of worlds energy. We are similarly voracious consumers of water, food, land, etc. Citizens in developing nations aspire to live the American lifestyle. Fareed Zakaria refers to this as the “rise of the rest” in his book A Post American World. But the world has only so much to give. Much of what we consume is not renewable. We are bumping up against the limits of earth’s ability to provide for us. As the population expands, for developing nations, their historically meager slice of the pie will expand. For developed nations, their slice of the pie must contract.


Our Ecological Footprint

Using ecological footprint data from Global Footprint Network we can see the current state of consumption for North America and the rest of the world (N.B. width of bar proportional to population in associated region).

Global Ecological Footprint

N.B. Ecological Footprint accounts estimate how many Earths were needed to meet the resource requirements of humanity for each year since 1961, when complete UN statistics became available. Resource demand (Ecological Footprint) for the world as a whole is the product of population times per capita consumption, and reflects both the level of consumption and the efficiency with which resources are turned into consumption products. Resource supply (biocapacity) varies each year with ecosystem management, agricultural practices (such as fertilizer use and irrigation), ecosystem degradation, and weather.
This global assessment shows how the size of the human enterprise compared to the biosphere, and to what extent humanity is in ecological overshoot. Overshoot is possible in the short-term because humanity can liquidate its ecological capital rather than living off annual yields.

Carrying Capacity

The last sentence of the note above is important. The developed nations are already consuming beyond the earths capacity to provide. Carrying Capacity has been exceeded and as it is exceeded, Carrying Capacity declines. While developed nations are making headway improving conservation, there has been little reduction of consumption – we have simply slowed the rate of per capita consumption. Meanwhile developing nations are moving up the consumption curve, aiming for an American-class lifestyle. Depletion of earth’s precious resources accelerates – oil, potable water, wild fish, species, clean air, etc. are all in decline. Earth’s Carrying Capacity is thought to be somewhere between 1 and 3 billion people. We have been operating the planet well beyond that for almost 50 years now.

Earth's Carrying Capacity

Even if the population stopped growing today, we are consuming beyond the earth’s capacity to provide. With 6.8 billion people already on the planet, the growth of consumption is the population problem, right now.

Zacharia suggests “As each country rises up, they become more self confident and nationalistic, and less inclined to cooperate in global unity toward a common goal of tackling the pressing problems of this century.”

And quoting Hamlet: “There’s the rub.”

  • Population has grown beyond the Carrying Capacity of the earth.
  • Increasing demand for critical resources (energy, water, food, land, …) reduces Carrying Capacity further, and accelerates decline exponentially.
  • Climate is changing, pollution growing, species extinction accelerating.
  • And our ability to work cooperatively to meet these challenges is failing.

This is not sustainable.

How do we break the vicious spiral? How can our global economy – grown soft and pudgy during the 20th century’s age of abundance – adapt and function in the lean and mean dog days of the 21st century?