California’s Prop 23 Morphing into Prop 26

In California’s election, voter support for Prop 23 is waning. That’s good news, but the fight is not over. If you didn’t like Prop 23, you’re really not going to like Prop 26. Out of state Big Oil was backing Prop 23, and, seeing that as a lost cause, they are shifting their support to Prop 26.

Prop 26 is another Big Oil backed initiative. Prop 26 would make it more difficult for state and local government to impose mitigation fees on business activities that cause harm to the environment or public health and safety. For example, fees imposed on tobacco companies to fund health-related programs, on industries for toxic waste cleanup and on alcohol retailers for law enforcement. In other words, when companies do us harm, through increased pollution, health risk, toxic waste, and crime, Prop 26 shifts the cost of those problems to the tax payer, and away from those businesses that caused the problem.

It’s all about AB32

Prop 23 was all about gutting California’s AB32 law, which requires the state to cut emissions of carbon dioxide and other greenhouse gases 25 percent by 2020.

So what are oil companies worried about? Why are the pumping tens of millions of dollars into Prop 23 and Prop 26 initiatives?

As the chart below shows, California is on the front line in the transition to alternative fuel vehicles. The US consumes more oil for transportation, than anything else. No state is making the transition to alternative fuels faster than California.

Alternative Fuel Vehicles Growth in California
Alternative fuel vehicles as share of all newly registered vehicles. (Source: RL Pike & Co.)

While AB32 is bad news for out of state Big Oil, it’s good news for California’s cleantech industry and general economic and environmental health of the state. It creates new cleantech jobs and positions California to be a global leader in this emerging industry. And it’s good news for the world, which will benefit from California’s cleantech innovations, much the way it did with decades of hi-tech chip, computer and communications innovations that put Silicon Valley on the map.

From the chart below, we can see that Cleantech jobs in the California Bay Area are on a fast growth path. Silicon Valley is becoming Cleantech Valley.

cleantech job growth in California
(source: US Bureau of Labor Statistics)

As sustainable business thinker Andrew Winston recenlty said:

“One global economy, the clean one, is growing, and the global battle for the new jobs is on. Some countries – such as China, Germany, Spain, Portugal, and many others – are going after these jobs aggressively. The other part of the economy – the dead fuel economy – is not going to be a growth engine (with the important exception of natural gas, which may provide a useful, medium-term bridge to the future).”

Clean economy jobs are growing ten times faster than the statewide average. AB32 is driving that growth as we transition to a clean energy economy.

cleantech jobs
Clean energy puts more people to work, while building the cleantech economy of the future.

AB32 is largely funded by revenue from fees. As AB32 ramps up it will require the implementation and collection of significantly higher fees to fund the implementation and enforcement of the Air Resources Board’s (ARB) scoping plan to reduce greenhouse gas (GHG) emissions to 1990 levels by 2020. If Big Oil succeeds in passing Prop 26, they take the teeth out of AB32 and pass the cost of policing businesses to the tax payers. Voting NO on Prop 23 and Prop 26 keeps big business accountable when they do harm.

Prop 23 Support is Fading

California voters are catching on to the fact that Prop 23 was an initiative promoted and funded by out of state Big Oil companies.
Dan Morain at the Sacramento Bee writes:

Heading into the final two weeks before the Nov. 2 election, the main funders, Texas-based Valero and Tesoro oil companies, seem to have concluded it makes no sense to throw more of their oil-stained millions at the bad idea.
Yes-on-23 strategist Rick Claussen told me last week that there would be no final push unless backers came through with $10 million fast. The week came and went without an infusion.

Why did out of state Big Oil give up on Prop 23? 3p’s article Investors Nervous About Proposition 23 offers us a clue:

Laura Campos, Director of Shareholder Activities at the Nathan Cummings Foundation, said that shareholders are “concerned Tesoro’s support for the highly controversial Proposition 23 could lead to a decrease in shareholder value by damaging the company’s reputation and negatively impacting the business environment in a state where Tesoro has significant operations.”

As oil company manipulation of California politics has gained public exposure, shareholders are concerned that voters will vote with their feet, and not shop at gas stations of the Prop 23 proponents.

And this week, as if to help drive the final nail into the Prop 23 coffin, the White House went public with its opposition to Prop 23.

Prop 26 is a Stealth Prop 23 For Big Oil

While out of state Big Oil may be giving in on Prop 23, they are not giving up on taking the teeth out of AB32. They are shifting the fight to Prop 26, which hasn’t been in the public eye much.

If we want to understand who benefits from Prop 26, we need to follow the money. Prop 26 is funded almost exclusively by oil, tobacco and alcohol companies.

Here are the top five contributing industries pushing Prop 26:

Oil & Gas $3,734,500
Pro-Business $3,377,323
Food & Beverage $2,054,500
Alcohol Producers $1,971,843
Tobacco $1,250,000

The biggest individual contributors include:

California Chamber of Commerce $3,337,323
Chevron Corporation $2,500,000
American Beverage Association $1,950,000
Philip Morris USA Inc. * $1,250,000
Anheuser-Busch Companies, Inc. * $925,000
ConocoPhillips $525,000
Cypress Management Company, Inc. * $500,000
MillerCoors $350,000
Wine Institute * $275,593
Chartwell Partners LLC $250,000
Occidental Petroleum $250,000

Source: California Secretary of State, Campaign Finance Division and Maplight.org

KQED radio recently hosted a debate on Prop 26, between John Dunlap, a proponent of Prop. 26, and Lenny Goldberg, executive director of the California Tax Reform Association and an opponent of Prop. 26. A commenter on that debate summed it up nicely:

What Mr. Dunlap and the industries supporting Prop 26 are really trying to do is overturn a unanimous (7-0) California Supreme Court decision (the Sinclair case mentioned at the beginning of the show) that said fees can be charged to address public health, environmental or other social problems directly associated with the production or use of a product. These legitimate regulatory fees are not “hidden taxes” as the proponents suggest. What voters really have to decide is, was the Supreme Court correct in saying, essentially, the polluter pays for their pollution. The alternative is that the public pays through poorer health or through their tax dollar (either through higher taxes or shifting tax revenues away from other services like education and law enforcement).

As I mentioned above, AB32 fosters job growth as we transition to a cleantech economy. When Big Oil tries to gut AB32, they hurt the California economy. But more than that, by promoting Prop 26, they are thumbing their nose at the citizens of California and shunning their responsibility for their toxic industry. A paper by the California Alliance for Environmental Justice, “Toxic Twins”, provides examples of Tesoro and Valero – two major Big Oil proponents of Prop 23 – and their toxic corporate behavior in California.

For more on out of state big oil, and a comprehensive list of backers of Prop 23, see Oil Change International’s excellent interactive map for info on who is funding Prop 23.

California Prop 23 money - big oil funding

David and Goliath

I leave you with this inspiring video of Joel Francis, a Senior at Cal State LA. Joel challenges the Goliath of Big Oil – multi-billionaire Charles Koch, of Koch Industries – to a debate. Koch is one of the major contributors to Prop 23, along with a variety of other initiatives and politicians working against a transition to a clean energy economy.

In Joel’s challenge, he says:

“Mr. Koch, I get that you and your corporation don’t want to be part of our clean energy future. That’s your free market choice. But that doesn’t mean you get to wreck its development for everyone else.”

Joel Francis Debate Challenge Prop 23
click link above to see the video

There is an age old attempt going on, of companies indirectly trying to shape the public understanding of key issues.

Let’s make sure we all do our homework.

Time just posted a good article on European Big Oil companies funding climate skeptics, that relates to all this. It’s worth reading.

And with elections across the country in their final days, if you want to see if your representatives are receiving money from big oil, check out http://dirtyenergymoney.org/.

For more on the California’s Prop 23 initiative, see:

Google: Implications of California’s Proposition 23

Masdar: The World’s First Zero-Carbon City

Keywords: Masdar, zero carbon city, UAE, United Arab Emirates, peak oil, climate change, global warming, electric cars

Masdar, the world’s first zero-carbon city, pokes a sustainable finger in the eye of the oil-addicted west. Masdar, created by the United Arab Emirates (UAE) government, is an ultra-sustainable city growing up in the desert outside of Abu Dhabi.

The irony of this:

  • The oil-addicted west consumes vast amounts of oil, funding the middle east’s oil-free sustainability initiatives.
  • As the US contines the love affair with gas guzzling SUVs, Masdar outlaws combustion-engine vehicles, replacing them with a network of electric cars.
  • As western powers bicker over global warming details, Masdar shades itself from the warming world with rooftop arrays of solar panels.
  • Partnering with MIT, Masdar’s Institute of Science and Technology offers programs in science and engineering with a focus on sustainability and renewable energy.

The Masdar development (detailed below) is designed by the British architect Norman Foster. In an interview with Time’s Bryan Walsh, you can feel Fosters frustration:

“It shows there is another side of this place that is totally unexpected. I think that as you read about some of this in Western newspapers, you’ll be shocked. Your immediate reaction would be, Why aren’t we doing this? We’re expanding London, and we’re just repeating the old model of sprawl. Why elsewhere is there not one experiment like this? Why not in the U.S., with its total dependence on oil? Why can’t this collective of European wisdom and power create a similar initiative? I have to ask myself, Why is this initiative, which in urban terms is the most progressive, radical thing happening anywhere, happening here?”

The oil-rich UAE isn’t doing this because they can – they are doing it because they must. Masdar is a model city for the hotter, less secure, walled-city future of a post-petroleum climate-changed world.

The UAE, with just 4.5 million people, but billions in oil money, has funded a rapidly expanding infrastructure. As a country matures, their social complexity increases, along with energy consumption. It takes vast energy to build and operate cities. And Dubai, at the heart of the UAE has become an icon of conspicuous consumption. They already consume more natural gas than they can produce, becoming a net importer to feed the need for electricity. Hence Masdar’s emphasis on solar power.

Using GapMinder’s Trendalyzer with energy consumption data from BP’s Statistical Review of World Energy 2010 and income data from the IMF, we can see some powerful trends unfolding in the UAE. (N.B. data presented for 1965 through 2008, 1 year steps, circle area proportional to population size, per capita energy use in tonnes of oil equivalent).

Note UAE’s (the green line) stunning near vertical increase in per capita energy consumption over the past 20 years.

uae energy consumption

With an eye to their future, as global oil production peaks (middle east oil experts predict 2014), the UAE is laying the foundation for a sustainable future.

Highlights of In Arabian Desert, a Sustainable City Rises

Architecture critic Nicolai Ourousoff reports on Masdar in the New York Times:

masdar city plan
click for larger image

Designed by Foster & Partners, a firm known for feats of technological wizardry, the city, called Masdar, would be a perfect square, nearly a mile on each side, raised on a 23-foot-high base to capture desert breezes. Beneath its labyrinth of pedestrian streets, a fleet of driverless electric cars would navigate silently through dimly lit tunnels.

Norman Foster, the firm’s principal partner, has blended high-tech design and ancient construction practices into an intriguing model for a sustainable community, in a country whose oil money allows it to build almost anything, even as pressure grows to prepare for the day the wells run dry. And he has worked in an alluring social vision, in which local tradition and the drive toward modernization are no longer in conflict — a vision that, at first glance, seems to brim with hope.

But his design also reflects the gated-community mentality that has been spreading like a cancer around the globe for decades. Its utopian purity, and its isolation from the life of the real city next door, are grounded in the belief — accepted by most people today, it seems — that the only way to create a truly harmonious community, green or otherwise, is to cut it off from the world at large.

He began with a meticulous study of old Arab settlements, including the ancient citadel of Aleppo in Syria and the mud-brick apartment towers of Shibam in Yemen, which date from the 16th century. “The point,” he said in an interview in New York, “was to go back and understand the fundamentals,” how these communities had been made livable in a region where the air can feel as hot as 150 degrees.Among the findings his office made was that settlements were often built on high ground, not only for defensive reasons but also to take advantage of the stronger winds. Some also used tall, hollow “wind towers” to funnel air down to street level. And the narrowness of the streets — which were almost always at an angle to the sun’s east-west trajectory, to maximize shade — accelerated airflow through the city.

With the help of environmental consultants, Mr. Foster’s team estimated that by combining such approaches, they could make Masdar feel as much as 70 degrees cooler. In so doing, they could more than halve the amount of electricity needed to run the city. Of the power that is used, 90 percent is expected to be solar, and the rest generated by incinerating waste (which produces far less carbon than piling it up in dumps). The city itself will be treated as a kind of continuing experiment, with researchers and engineers regularly analyzing its performance, fine-tuning as they go along.

masdar solar panels
Credit: Duncan Chard for The New York Times

But Mr. Foster’s most radical move was the way he dealt with one of the most vexing urban design challenges of the past century: what to do with the car. Not only did he close Masdar entirely to combustion-engine vehicles, he buried their replacement — his network of electric cars — underneath the city. Then, to further reinforce the purity of his vision, he located almost all of the heavy-duty service functions — a 54-acre photovoltaic field and incineration and water treatment plants — outside the city.

It’s only as people arrive at their destination that they will become aware of the degree to which everything has been engineered for high-function, low-consumption performance. The station’s elevators have been tucked discreetly out of sight to encourage use of a concrete staircase that corkscrews to the surface. And on reaching the streets — which were pretty breezy the day I visited — the only way to get around is on foot. (This is not only a matter of sustainability; Mr. Foster’s on-site partner, Austin Relton, told me that obesity has become a significant health issue in this part of the Arab world, largely because almost everyone drives to avoid the heat.)

The buildings that have gone up so far come in two contrasting styles. Laboratories devoted to developing new forms of sustainable energy and affiliated with the Massachusetts Institute of Technology are housed in big concrete structures that are clad in pillowlike panels of ethylene-tetrafluoroethylene, a super-strong translucent plastic that has become fashionable in contemporary architecture circles for its sleek look and durability. Inside, big open floor slabs are designed for maximum flexibility.

The residential buildings, which for now will mostly house professors, students and their families, use a more traditional architectural vocabulary.

What Masdar really represents, in fact, is the crystallization of another global phenomenon: the growing division of the world into refined, high-end enclaves and vast formless ghettos where issues like sustainability have little immediate relevance.

For more on Zero Carbon initiatives, see:

Top Business Leaders Deliver Clean Energy Plan

Why Farmers Need a Pay Rise…

The world’s farmers need a pay rise – or, come the mid-century, the other 8 billion of us may well find we do not have enough to eat.

True, this assertion flies in the face of half a century of agricultural economics orthodoxy – but please bear with me as I explain.

Globally and especially  in developed countries, food has become too cheap. This is having a wide range of unfortunate – and potentially dangerous – effects which include:

  • Negative economic signals to farmers everywhere, telling them not to grow more food
  • Increasing degradation of the world’s agricultural resource base
  • A downturn in the global rate of agricultural productivity gains
  • An ‘investment gap’ which is militating against the adoption by farmers of modern sustainable farming and other new technologies
  • A deterrent to external investment because agriculture is less profitable than alternatives.
  • The decline and extinction of many local food-producing industries worldwide
  • A disincentive to young people (and young scientists) to work in agriculture.
  • Loss of agricultural skills, rural community dislocation and increased rural and urban poverty affecting tens of millions
  • Reduced national and international investment in agricultural research and extension
  • Lack of investment in water, roads, storage and other essential rural infrastructure
  • The waste of up to half of the food which is now produced
  • A pandemic of obesity and degenerative disease that sickens and kills up to half of consumers of the ‘modern diet’, resulting in
  • Soaring health costs causing the largest budget item blowout in all western democracies
  • The failure of many developing countries to lay the essential foundation for economic development – a secure food and agriculture base – imposing direct and indirect costs on the rest of the world through poverty, war and refugeeism.

From this list it can be seen that low farm incomes have far wider consequences for humanity in general than is commonly supposed.

Indeed, in a context in which all of the basic resources for food production are likely to become much scarcer, it may be argued that, indirectly, they imperil every one of us.

A Market Failure

This aspect of future global food security is primarily about a market failure.

At its ‘How to Feed the World’ meeting in October 2009 the UN Food and Agriculture Organisation stated that investment of the order of $83 billion a year was needed in the developing world alone, to meet the requirement for a 70 per cent increase in food production by 2050. (source: ii)  However, almost in the same breath, it noted “Farmers and prospective farmers will invest in agriculture only if their investments are profitable.” (My emphasis).

The logic is unassailable. Today most of the world’s farmers have little incentive to invest in agriculture because the returns are so low. This applies as much to farmers in developed countries , as it does to smallholders in Asia or Africa.

Reasons for the low returns are not hard to find: farmers are weak sellers, trapped between muscular globalised food firms who drive down the price of their produce, and muscular industrial firms who drive up the cost of their inputs. This pincer movement not only discourages ‘developed’ agriculture but also prevents undeveloped agriculture from developing.

Nothing new here, you may say. So what has changed? The growing imbalance in power between farmers and those who dominate the food supply chain is what has changed.

Two decades ago most farm produce was largely sourced from local farmers by local buyers for local markets and consumers, as it was through all of history.  In the 21st century there has been a massive concentration of market power in the hands of a tiny number of food corporations and supermarkets sourcing food worldwide.  These are – quite naturally – doing all they can to reduce their input costs (farm prices) as they compete with one another. This is not a rant about globalisation: it’s a simple observation about one of the facts of global economic life.

The power of the farmer to resist downward price pressure has not increased. Indeed it has weakened, as the average producer now competes against some struggling farmer in a far away country, rich or poor, who is also simply trying to survive by selling at the lowest price.

The power of the global input suppliers – of fuel, machinery, fertilizer, chemicals, seeds and other farm requirements, has also grown as they concentrate and globalise.  This makes it easier for them to raise the cost of their products than it is for farmers to obtain more for their wheat, rice, livestock or vegetables or to withstand input price hikes.

As a consequence of this growing market failure, the economic signal now reaching most of the world’s farmers from the market is “don’t grow more food”.

Its effect is apparent in the fact that world food output is now increasing at only about half the rate necessary to meet rising global demand, and that yield gains for major crops have stagnated.

While some will argue such cost/price pressures make for greater economic ‘efficiency’, the logical outcome of unrestrained global market power will eventually displace around 1.5 billion smallholders out of agriculture, with devastating consequences for the landscapes they manage and the societies most affected. Putting one in five of the Earth’s citizens out of work and destroying the food base is not a strategy any intelligent policy or government would advocate, one hopes. But it is one of those ‘externalities’ which classical economics sometimes omits to factor in – and is happening, nevertheless.

Global Degradation

In a recent satellite survey, researchers working for FAO reported 24 per cent of the Earth’s land surface was seriously degraded – compared with 15 per cent estimated by an on-ground survey in 1990. The FAO team noted that degradation was continuing at a rate of around 1 per cent a year. (source: iii)

Every agronomist and agricultural economist knows that, when farmers are under the economic hammer, a good many of them will overstock and overcrop in a desperate effort to escape the poverty trap leading to severe resource degradation. In drier, more marginal country, cost/price pressures can devour landscapes – and this is undoubtedly a major factor (though not the only one) in the degradation of land and water worldwide, especially in the world’s rangelands.

If we continue to sacrifice one per cent of the world’s productive land every year, there is going to be very little left on which to double food production by the mid-century: crop yields in 2060 would have to increase by 300 per cent or so universally, which is clearly a tall order.

Much the same applies to irrigation: “In order to double food production we need to double the water volume we use in agriculture, and there are serious doubts about whether there is enough water available to do this,” is how Dr Colin Chartres, director general of the International Water Management Institute summed it up recently. (source: iv)  Dr Chartres estimates that doubling world food output could require up to 6000 cubic kilometres more water.

Solutions to land and water degradation are reasonably well known, and have been shown to work in many environments – but are not being adopted at anything like the rates necessary to double world food production or even to conserve the existing resource base. One reason is that farmers, in the main, cannot afford to implement them, even though many would like to do so. The economic signal is wrong.

As a result, world agriculture is today primarily a mining activity. We all know what happens to mines when the ore runs out.

Productivity Decline

There is also persuasive evidence that world agriculture is dropping off the pace – that it is no longer making the yield advances and total productivity gains achieved in the previous generation. In a recent paper Alston and Pardey (source: v)  documented this decline both in the US and globally, attributing it significantly to falling investment worldwide in agricultural science and technology and extension of new knowledge to farmers.

The role of low returns in discouraging farmers, in both developed and developing countries, from adopting more productive and sustainable farming systems cannot be ignored. While a few highly efficient and profitable producers continue to make advances, the bulk of the world’s farmers are being left behind. Since small farmers feed more than half the world, this is a matter for concern.

One of the indirect effects of the negative economic signal for agriculture can be seen in the growing reluctance of governments to invest in agricultural research and development, and their increasing tendency to cut ‘public good’ research. This has happened in most developed countries and even in places such as China the level of ag R&D support is falling as a proportion of the total science investment. With agricultural R&D comprising a mere 1.8 cents of the developed world’s science dollar in 2000, one has a very clear idea how unimportant most of the world’s governments now consider food production to be. (source: vi)

The fact that agriculture appears perennially unprofitable and suffers from continuing social malaise probably contributes, subliminally, to a view among urban politicians that society ought not to be wasting its money funding research for such a troubled sector: there are a thousand other more attractive and exciting fields for scientific investment. This negative (and false) image of agriculture is an unspoken driver behind the reduced global R&D effort.

Today the world invests around $40 billion a year in agricultural research – and $1500 billion a year in weapons, as if killing one another were forty times more important than eating.

Is food too cheap?

For affluent societies at least, food is now the cheapest in real terms it has ever been in human history.

Back in our grandparents’ time, in the early part of the 20th century, the average western wage earner devoted about a third of their weekly income to food.  Rent was relatively cheap, people didn’t have cars, iPhone bills, plasma TVs, facelifts or overseas vacations – and food was essential. By the 1970s the amount of household disposable income spent on food was down to 20 per cent. Today it is around 11-12 per cent in Australia and similar in other western nations. As incomes rise in China and India, the proportion is falling there too.

Historic commodity food prices from FAO
Click for larger image

When something is too cheap, people do not value it as they should.  This produces a lack of respect for the product itself, for the people and industries involved in its production – farmers and scientists – and for the places it is produced and for the resources of land, water and human skills that produce it. This is one explanation for the negative image held by governments, businesses and most societies towards agriculture and its investment needs.

In an age where 3.5 billion humans have only the dimmest notion where their food comes from, lack of respect for the main thing that keeps them alive is coming to be a predominant ‘value’ in the human race and this is a potential danger.

A Culture of Waste

Food is now so cheap that developed societies such as the US, Britain and Australia throw away nearly half, while developing countries lose nearly half post-harvest. (source: vii)

Societies that pay their farmers such low returns, have found they can afford to send nearly half of the farmers’ efforts to landfill. Or burn in an recreational vehicle enough grain as biofuel in one week to feed a poor person for a year.

Where our ancestors stored, conserved and recycled nutrients, humanity now appears to waste 70% -90% of all the nutrients used to produce food.  On farm, up to half the applied fertiliser does not feed crop or pasture but escapes into the environment. Of the harvested nutrients, some are lost post-harvest, in transport, processing and cooking – but more than 30 per cent are simply discarded, in the shops and in the home. Then we dump around 90 per cent of our sewage nutrients in the ocean.

In short, the modern food system has established a culture of absolute and utter waste, sustained only by the mining of energy and nutrients (from rock or soil), which will eventually run out or become unaffordable to most farmers.

The universal practice of recycling, in use since agriculture began more than 6000 years ago, has broken down. The planetary nutrient cycle is now at risk from the colossal nutrient pollution now occurring.

This situation cannot persist more than a few decades. We will need to recycle and invest in new systems – but for that to occur, farm incomes and the incentive to invest in food production must rise and the economic signal to invest in agriculture must change.

An Unhealthy Situation

Cheap food is at the root of a pandemic of disease and death larger in the developed world than any other single cause of human mortality, and spreading like wildfire in the newly-industrialised world. Cheap, abundant processed food is a driver for obesity, which now affects one in five humans, and plays a significant role in the society-wide increase in cancers, heart disease, diabetes, stroke and bowel disorders.

Cheap food, in other words, is an economic invitation to consumers – including millions of children – to kill themselves prematurely through overindulgence.

Cheap food is the chief economic driver of the greatest budget blow-out in all western democracies: healthcare.

Solving the Food Challenge

The purpose of this essay is to call attention to the effect a never-ending reduction in farmers’ incomes will have on world food security at a time of rising physical constraints to production, including scarcities of land, water, energy, nutrients, technology, fish and stable climates.

At the very time when most experts agree we should be seeking ways to double food output sustainably over the coming half-century, the ruling economic signal is: “don’t do it”.

Of course, we can simply obey the economic signal and allow agricultural shortfalls to occur – but that will expose 8 or 10 billion consumers to massive unheralded price spikes, of the sort experienced in 2008, which have a dire impact on the poor, start wars and topple governments – and will not benefit farmers as much as a stable, steady increase in their incomes.

Most of the world’s poorest people are farmers, and it follows that one of the most effective remedies for world poverty is to increase the returns to agriculture. True, this will involve raising food prices for the urban poor but they are less numerous and can more easily be assisted by other government measures. At present rural poverty is maintained throughout the world largely by the economic policy of providing affluent city consumers with cheap food.

It is necessary to state this essay does not advocate a return to agrarian socialism, protectionism, commodity cartels or an end to free markets. In fact, we probably need to move much faster and further towards totally free trade in agricultural products in order to encourage efficient producers – large and small – around the world.

But it does hold up a warning flag about the universal dangers of underinvestment, negative signals and sentiment, resource destruction and rural dislocation caused by the undervaluing of the one commodity humanity absolutely cannot do without, as we approach the greatest demand for food in all of history.

There are numerous ways this issue might be addressed. Here are a few:

  1. Price: through an educated “community consensus” that results in willingness on the part of consumers, supermarkets and food processors to pay more for food so as to protect the resource base and enable farmers to invest in new technologies (source: viii)
  2. Subsidy: by the payment of a social wage to farmers by governments for their stewardship on behalf of society of soil, water, atmosphere and biodiversity, separate from their commercial food production
  3. Regulation: by limiting by law those practices or technologies which degrade the food resource base and rewarding by grant those which improve it
  4. Taxation: by levying a resource tax on all food which reflects its true cost to the environment to produce, and by reinvesting the proceeds in more sustainable farming systems, R&D, rural adjustment and enhanced resource management.
  5. Market solutions: by establishing markets for key farm resources (eg carbon or water) that result in higher returns for farmers from wise and sustainable use.
  6. Public education about how to eat more sustainably; industry education about sustainability standards and techniques.
  7. A combination of several of the above measures.

The technical solutions to most of the world’s food problems are well-known and well understood – but they are not being implemented as widely as they should because of a market failure which prevents their adoption. To avoid grave consequences, affecting billions of people, this failure needs correction.

It also needs correcting because, as long as world food production remains an undervalued activity, then so too will investing in the research essential to overcome future shortages –crop yields, water use, landscape sustainability, alternative energy, the recycling of nutrients and the reduction of post-harvest losses. To satisfy a doubling in demand for food over the coming half century calls for at least $160 billion in worldwide agricultural R&D activity a year – equal to a tenth of the global weapons budget. However this would leave the world both more peaceful – and better fed.

It is not the purpose of this essay to solve the issue of how to deliver fairer incomes to farmers worldwide, but rather to foster debate among thoughtful farmers, policymakers and researchers about how we should go about it.

However it does question whether some of the ‘old truths’ of the 20th century still apply in the 21st, or whether the era of globalisation and resource scarcity has changed the ground rules.

It also asks whether the unstinted application of overwhelming market force against farmers is the act of a sapient species – or a mob of lemmings?

Over to the sapient ones among you.

–– Julian Cribb FTSE

Julian Cribb is Founding Editor of Science Alert, and is the principal of Julian Cribb & Associates, specialists in science communication. He is a fellow of the Australian Academy of Technological Sciences and Engineering.

Sources

i. Sources for this essay are those cited in Julian Cribb's  book The Coming Famine, University of California Press, 2010. Since they take up 24 pages, we have not reproduced them all here. See the book at Amazon or UC Press for full reference listing.

ii. FAO High Level Export Forum, How to feed the World: Investment, Rome, October 2009. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/
HLEF2050_Investment.pdf

iii. Bai ZG, Dent DL, Olsson L and Schaepman ME 2008. Global assessment of land degradation and improvement 1: identification by remote sensing. Report 2008/01, FAO/ISRIC – Rome/Wageningen

iv. Chartres C, World Congress of Soil Science, Brisbane, August 2010

v. J. Alston, J.M.Beddow, P. Pardey, “Mendel versus Malthus: research, productivity and food prices in the long run,” University of Minnesota, 2009. http://ageconsearch.umn.edu/bitstream/53400/2/SP-IP-09-01.pdf

vi. Pardey P et al, Science, Technology and Skills, CGIAR report, October 2007.

vii. See for example Lundqvist, J., C. de Fraiture and D. Molden. Saving Water: From Field to Fork – Curbing Losses and Wastage in the Food Chain. SIWI Policy Brief. SIWI, 2008.

viii. In case this should raise a sceptical eyebrow, the recent stakeholder report by Woolworths Australia “Future of Food”, 2010, suggests at least some of the major players in the food game have a dawning grasp of the consequences of their actions and are now looking to invest in (mainly non-income) ways to support farmers.

For more on the global food issue, see:

Recommended Reading: The Coming Famine: The Global Food Crisis and What We Can Do to Avoid It by Julian Cribb

Climate Change May Reduce Protein in Crops

Warmer Temperatures in China to Reduce Crop Yields

The Real Population Problem

987zzz321
987zzz321
zp8497586rq

Prosperity Without Growth

Keywords: smart growth, sustainable growth, sustainable business, Edward D. Hess, Strategy+Business

In the latest issue of Strategy and Business, David K. Hurst reviews Smart Growth by Edward D. Hess. The review is below. For more on growth and sustainability see:

Nobel Laureate Joseph Stiglitz on Sustainability and Growth

Prosperity without Growth: A review of Smart Growth by Edward D. Hess

Edward D. Hess, professor of business administration and Batten Executive-in-Residence at the University of Virginia’s Darden School of Business, has a heretical thought: Growth may not be good. In Smart Growth, he questions the four major assumptions behind the conventional wisdom of corporate success, which he calls the “growth mental model” (GMM): that businesses must grow or die, that growth is unequivocally good, that growth should be smooth and continuous, and that quarterly earnings are the primary measure of success. In addition, he supplies a series of trenchant questions for managers to ask themselves about how, why, and even whether their firms should grow.

In nine crisp chapters, Hess demonstrates that the GMM is neither possible in practice nor feasible in theory, and that attempts to meet its demands can create insurmountable obstacles to corporate sustainability. His arguments are supported by a series of case studies showing that growth is usually uneven and episodic — impossible to sustain for more than relatively short periods of time. Thus, attempts to “implement” the GMM result either in profitless growth, especially through acquisitions, or in ersatz earnings produced via a wide variety of financial manipulations. To test whether the concept of the GMM is supported by theoretical perspectives on growth, Hess turns to economics, organizational strategy and design, and biology. He finds that neoclassical economics is the framework that is most sympathetic to the GMM, but its assumptions do not hold up in the real world; that the strategic and design perspective offers little support for the GMM; and that biological theories are notable for the stress they put on the limits to growth. So there is little support for the conventional wisdom in theory.

Hess’s conclusion is that corporations should aim for sustainable or “smart” growth by asking some key questions, especially regarding the resources most needed to support such growth. Following economist Edith Penrose’s resource-based theory of the firm, he contends that the true limit to growth is usually defined by the capabilities of the firm’s managers — supporting this argument with the well-documented case of Starbucks’s overreach, in which the rapid expansion in the number of stores caused liabilities to rise precipitously and diluted the value of the brand.

All this makes good sense. The only shortcoming may be the author’s failure to examine why the GMM is so robust in the face of all the evidence against it. Is it because there are large constituencies in the economy that generate revenue by pushing the GMM and thriving on the turmoil it creates? If so, is there a need for public policy addressing it? And what risks do firms run if they eschew the flawed GMM in favor of smart growth?

Author Profile:

David K. Hurst is a contributing editor of strategy+business. His writing has also appeared in the Harvard Business Review, the Financial Times, and other leading business publications. Hurst is the author of Crisis & Renewal: Meeting the Challenge of Organizational Change (Harvard Business School Press, 2002).

Reprinted with permission from the strategy+business website. Copyright 2010 by Booz & Company. All rights reserved. www.strategy-business.com

More on Smart Growth at Amazon.com

Extreme Rain

Keywords: extreme rain, mudslide, climate change, extreme weather, flood, Maierato, Calabria, Italy, Lloyds of London, Emerging Risks Team, Climate Change Risk Management

As climate change progresses, weather extremes increase. New records are increasingly set for heat, cold, draught, and rain. Climate models predict an increase in the frequency and severity of extreme rainfall events.

The video below shows an example of the results of extreme rain. A mudslide in Maierato, Calabria, Italy results as the soil becomes saturated with rain. Liquefaction of the land occurs – the earth, rock and soil flow like a river, carrying trees, homes, anything on the surface down hill. The video is visually astonishing.

Lloyds of London Emerging Risks Team and the Climate Change Risk Management consultancy have published a whitepaper on Extreme Rainfall. Lloyd’s researchers found rainy days exceeding 25mm have become more frequent, increasing 33%, since 1960. However, the change is most significant for days of extreme rainfall over 40mm, which recorded a 900% increase.

Interestingly, the trends in this paper would be missed under analysis of annual or monthly records. The change in extremes in the daily record is entirely hidden from annual, seasonal and monthly records. This highlights the importance of collecting data and modelling at an appropriate level of granularity.

The study examined daily rainfall levels in East London from 1915 to 2006 and found only one day prior to 1960 of recorded rainfall exceeding 40mm, compared with ten days between 1960 and 2006. Over the entire period analysed, over half of the days with rainfall over 40mm were in September.

Lloyd’s team analyzed data over two separate periods (1915-1960 and 1961-2006), providing two 46 year periods. They found that daily rainfall exceeding 25mm occurred on 107 occasions in the 92 year period, with more in the post-1960 period (61) than in the pre-1960 period (46), (Figure 2).

lloyds extreme rainfall figure 2

Figure 3 shows the percentage of increase of various daily rainfall levels between the two time periods. For example, the number of days exceeding 40mm has increased from once between 1915-1960, to 10 occurrences, a 900% increase, between 1961-2006.

lloyds extreme rainfall figure 3

From the Introduction of Lloyd’s Whitepaper

There is a scientific consensus (Oreskes 2004) that the mean surface temperature of the Earth has warmed in recent decades, and that the warming amounts to around 0.8°C since the beginning of the 20th Century (IPCC 2007). From this, Goddard Institute of Space Studies (GISS) estimate that 2005 tied with 2007 as the warmest year since reliable instrumental measurements became available, and the first six months of 2010 appear to have exceeded these. Detection and attribution studies show that there is a high probability (at least 90%) that this warming is largely the result of man-made emissions of greenhouse gases (mainly CO2) in the troposphere and that the amount and rate of warming are outside of the range of natural variation identified during the latter part of the last 11,000 years.

Continued warming is expected to have important consequences for a range of Earth systems (including the atmosphere, cryosphere, oceans, hydrological systems and the biosphere) and there are compelling reasons to expect increases in the magnitude and frequency of some natural hazards such as floods (Huntington 2006), droughts (Mason and Goddard 2001) and landslides (e.g. Fischer et al. 2006). There are also concerns about the stability of several of the large ice sheets on Earth (e.g. Overpeck et al. 2006), as these have the ability to impact upon global sea levels and regulate ocean currents. (See Lloyd’s 360 Risk Insight Report “Rapid Climate Change” – www.lloyds.com/360.)

The pattern and extent of future warming has enormously important policy implications for governments and business. The only way in which such predictions can be made is through the use of Global Climate Models (GCMs) and through risk-based analyses.

It is clear that climate change presents a risk to the facilities and infrastructure of national and local authorities. An assessment and analysis of these risks is required to develop a robust risk assessment, mitigation and adaptation programme at regional and national levels.

The objectives of the preliminary analysis presented in this report were to:

  • Describe the patterns of daily rainfall in London and compare the early 20th Century record with that of the late 20th / early 21st Centuries.
  • Catalogue the occurrence of rainfall events that have resulted in major downpours in the last century.
  • Analyse and interpret changes in daily rainfall patterns.
  • Analyse trends in annual, seasonal and monthly rainfall patterns.

The whitepaper can be downloaded here.

Recommend Reading

California’s Other Storm of the Century by Jay Kimball

Atlantic Hotter Than Before Katrina, Boosting Storm Forecasts by Jay Kimball

State of the Climate: Hottest Decade on Record by Jay Kimball

Jeremy Grantham: Everything You Need to Know About Global Warming in 5 Minutes by Jay Kimball